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ABSTRACT

NMR and MRI can yield detailed chemical and dynamic information about flow at microscopic resolu-
tions, but suffer from low signal to noise relative to alternative techniques for flow measurements. In por-
ous media and microfluidic devices, this sensitivity problem is further exacerbated by magnetic
susceptibility broadening and low coil filling factor. Fortunately, remote detection can mitigate these
issues by physically separating signal detection from the other steps of the experiment. The technique
requires, however, that any measured interactions be encoded in indirectly sampled dimensions, leading
to experiments of high dimensionality and correspondingly long acquisition times. We have applied com-
pressed sensing, a reconstruction technique used in MRI, to dramatically reduce these experiment times
by 8-64x through partial sampling (sub-sampling) of k-space, allowing for the collection of images with
significantly higher resolutions in reasonable amounts of time. Here, we demonstrate this reconstruction
technique to remotely detected flow measurements in a serpentine mixing chip and in a microfluidic
channel harboring a constriction. We find that compressed sensing allows for significantly higher resolu-
tion images to be collected in a practical amount of time, thus significantly enhancing the applicability of

remote detection to flow imaging.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Of the many techniques available to study flow in small devices,
the most commonly applied are based on optical particle tracking
and ultrasound. NMR and MRI, however, are unique in their ability
to provide both chemical and dynamic information about the flow
field in three spatial dimensions. Indeed, MRI measurements can
yield the complete flow propagator in favorable cases, at micro-
scopic resolution and even in opaque materials. For example,
MRI has been used to study complex fluid dynamics and rheologi-
cal properties [1,2], flow and mixing in microfluidic channels [3],
fluid flow in porous media [4-6], and to study oil and water
in situ in oil well logging applications [7]. In all these cases, MRI
can be applied in unperturbed native systems, obviating the
need for artificial model systems with carefully tailored optical
properties.

One important potential domain of application for MRI veloci-
metry is microfluidics, in which control over fluid dynamics on
microscopic length scales is exploited to create ‘lab on a chip’ de-
vices that can parallelize and miniaturize complex laboratory
tasks. These tasks include the optimization of crystal growth con-
ditions [8], supporting and monitoring live cell cultures [9,10],
and complex chemical analyses [11-14]. To those ends, a variety
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of microfluidic components have been developed, including micro-
chromatography columns [15,16], pumps [17-20], valves [20-22],
MEMS [23,24], and micro-optofluidic devices [13,25,26]. However,
the design and optimization of these devices is hindered by the
lack of techniques that can fully characterize flow and dispersion
within them.

While MRI is one such technique, its low sensitivity remains a
major challenge, one that is exacerbated by the low filling factors
and the significant magnetic susceptibility broadenings typical of
porous and microfluidic systems. Fortunately, many of these fac-
tors can be mitigated by remote detection, a method which en-
codes and stores the spatial and chemical information into the
spin degrees of freedom of the flowing fluid and detects it as the
fluid reaches an optimized detector [27,28]. In remote detection,
encoding occurs over the entire volume of the structure (e.g. cm-
scale microfluidic chip, bead pack, rock sample), while the detector
volume is matched to the volume of fluid in the features to be im-
aged (um scale). The encoding step may include delays for chemi-
cal shift evolution and relaxation, and gradient pulses for multiple
spatial dimensions, velocity encoding and even measurements of
acceleration, or higher order moments of the motion. The sensitiv-
ity enhancements possible with remote detection [29] can be sev-
eral orders of magnitude for microfluidic and microporous
structures. However, all encoded interactions must be sampled in
indirect dimensions, and their exhaustive Fourier sampling poten-
tially leads to prohibitively long acquisition times.
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In this work, we dramatically reduce the required acquisition
times (8-64x) for remotely detected MRI experiments by the
application of compressed sensing, a method that has been used
to accelerate image acquisitions in clinical MRI [30,31] where it
shows great promise in applications requiring accelerated acquisi-
tion, including hyperpolarized spectroscopic imaging [32] and car-
diac imaging [33]. Compressed sensing is a general non-linear
reconstruction technique that can be applied to subsampled data
in many contexts beyond NMR and Fourier reconstruction
[34,35]. The technique relies on the notion of transform sparsity,
in which most of the signal of an image under the appropriate
transformation is concentrated into a small fraction of the coeffi-
cients that span the transform space, and a reconstruction that will
encourage a sparse fit to the acquired data. In its application, we
reconstruct an image from observed data by performing an l;-
norm optimization on such a sparse representation of the recon-
struction. The vast majority of images have transform sparsity,
and this is exploited in many image compression formats, for in-
stance JPEG2000. Furthermore, others have shown that non-linear
reconstruction techniques like maximum entropy and l;-norm
minimization perform far better when the reconstructed data set
is sparse [36]. Compressed sensing is a formalized generalization
of this idea, as the optimization is performed on a sparse represen-
tation of the reconstruction [30,32].

The results of an exhaustively sampled imaging experiment can
be uniquely inverted by the Fourier transform to yield a single im-
age; an undersampled data set, however, is consistent with a family
of images. Therefore, the goal of our reconstruction algorithm, out-
lined in Fig. 1A, is to search for an image that is consistent with the
experimental data but also sparse. Mathematically, this is done by
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Fig. 1. (A) Data reconstruction with compressed sensing. The technique minimizes
the l;-norm of the sparse representation of the image that is consistent with the
collected data. Linear transforms relate the sparse domain to the reconstruction (i.e.
wavelet) and the reconstruction to the collected data i.e. Fourier transform. (B) The
pulse sequence for a remotely detected MRI experiment with velocity encoding. The
experiment starts with slice selective excitation in one dimension, followed be
phase encoding (tpg) and velocity encoding (tye;) within a spin echo sequence. The
total encoding times are less than 1 ms in all cases. The experiment ends by storage
of the encoded information as longitudinal magnetization, followed by travel to the
optimized microcoil detector, where the encoded information is read
stroboscopically.

minimizing the l;-norm of a sparse representation of the image
(the sum of the individual pixel magnitudes), while also enforcing
consistency of that image with the data that were actually collected.
In the examples we present, we reconstruct MRl images by minimiz-
ing the I;-norm of the wavelet representation of the trial image while
simultaneously enforcing consistency of that image, when trans-
formed back into the conjugate k-space, with the experimentally
measured data. The algorithm stops when convergence criteria are
met indicating that the l;-norm has been minimized for the given
tolerance to the acquired data. Minimizing the 1;-norm is a well-
known method to find sparse reconstructions of otherwise inade-
quately sampled data, and is, indeed, one of several methods to find
sparse representations of data, often referred to as basis pursuit.

Stating the reconstruction algorithm exactly, given the collected
data in k-space, k;, and a series of linear transforms to relate the
sparse representation of the reconstruction to the collected data
R, and S, whose inverses respectively reconstruct the fully sampled
data and generate a sparse representation of the reconstruction,
the appropriate optimization is [30,37]:

min |s;|"st
|RSs; — kil < &

The variable ¢ controls the strength of the constraint and is set to be
large enough to guarantee convergence of the optimization in a rea-
sonable amount of time, while still enforcing agreement with the
collected data. Performing an optimization with an ‘exact’ match
(& =0) takes several times longer to produce insignificant changes
to the reconstruction. Alternatively, ¢ can be set to a significant frac-
tion of the image’s overall noise level to yield a reduction in the
appearance of noise due to the additional regularization this allows.
The algorithm is straightforward to implement and requires only
the selection of optimization parameters and methods, and the
choice of transform to yield a sparse representation. For example,
this might involve one of several freely available packages capable
of large scale 1, optimizations, and an implementation of the fast
wavelet transform [38] to yield a sparse representation of the
reconstruction. The choice of the most appropriate transform
depends on the reconstructed data: for images of objects with gen-
eric structure like the brain [37], wavelet transforms are commonly
employed, but for angiograms [33,37] or images of objects with
sharp edge features, a finite-difference transform may be more
appropriate.

MRI images of microfluidic devices are comparatively sparse,
characterized by small-scale features over large length scales.
This makes the application of compressed sensing particularly
appealing because transform sparsity is easily obtained and, in
general, the data will not satisfy the more stringent requirements
(e.g. specific functional forms such as an oscillating exponential
decay) of many sub-sampling techniques commonly applied in
NMR spectroscopy [39]. Furthermore, the multiple dimensions
required in remotely detected MRI velocimetry experiments pro-
vide tremendous flexibility in the implementation of a sub-sam-
pling schedule. Here we have used sparse encoding in the
wavelet basis to implement compressed sensing for the MRI
analysis of a microfluidic mixer and a microfluidic chip harboring
a constriction, achieving reductions in acquisition times between
8 and 64x.

2. Methods

All experiments with the mixing chip were performed on a
300 MHz Oxford Instruments wide bore magnet with a Varian con-
sole and 30 mm imaging system capable of producing 100 G/cm
magnetic fields on all axes. Experiments with the microfluidic weir
chip were acquired on a similar 300 MHz Varian system with a
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three-axis gradient set capable of generating 60 G/cm gradients
along the Z-axis and 80 G/cm on the X- and Y-axes. The remote
detection probe setup and pulse sequence is briefly summarized
here and detailed elsewhere. The apparatus consists of a custom
built microcoil probe with a single capillary connecting the micro-
coil circuit to the microfluidic chip held in a plastic holder. The
microcoil probe is inserted above a standard 30 mm proton imag-
ing probe, used for encoding, such that the mircofluidic chip is cen-
tered in the 30 mm imaging probe’s sensitive region. A steady flow
of distilled and filtered water is maintained through the system by
pressurizing a supply tank with N, gas at constant pressure (0-
100 psi). Bubbling within the lines is prevented by the addition
of a small amount of isopropanol (1-2 vol.%) to the water.

The pulse sequence for remote detection (Fig. 1B) involves spa-
tial and velocity encoding by multi-lobe gradients within a spin
echo imaging sequence. The shapes of these gradient pulses are
chosen for velocity or acceleration compensated spatial and veloc-
ity encoding as detailed in [40]. The phase encoded signal is stored
longitudinally and detected after flow to the microcoil detector
using a stroboscopic sequence, yielding both the NMR spectra
and the time-of-flight. The excitation pulse, storage pulse, and re-
ceiver phases are cycled in a four step phase cycle to achieve
hypercomplex detection, subtraction of signals from unencoded
spins, and artifact suppression.

3. Data reconstruction

The reconstruction code was programmed in Matlab using two
external packages, spgl1 v.1.7 [41] and Wavelab v.8.02 [42]. Spgl1
is a general l;-norm optimizer that can operate upon complex
numbers, parametrically call external objective functions that re-
late the sparse domain and the collected data, and allows for an
inequality constraint to the collected data as is necessary for noise
reduction. Sparsifying transforms were implemented with Wav-
elab, a package written for Matlab capable of calculating the fast
wavelet transform for a variety of wavelets. Prior to reconstruction
of the subsampled image, the direct dimension is apodized and
processed using a conventional Fourier transformation, and the
intensity corresponding to each spectral line extracted by complex
integration (in the case of water, there is one spectral line). Recon-
structions of subsampled data are performed using the l;-norm
optimization problem stated in the introduction, and with the
above software libraries. We apply these separately to generate a
pair of complex valued images for each of the values of the velocity
encoding gradient. Further, the calculation is performed separately
for each time-of-flight image, taking 2-10 min per 256 x 256
velocity encoded image. The noise parameter (or looseness of the
fit), €2, is set to approximately one-tenth the value of the noise le-
vel calculated from the early time-of-flight points, corresponding
to experimental time points that precede the arrival of encoded
fluid at the detector. The velocity is then calculated as the phase
difference between the two reconstructed complex valued images
for the two values of the velocity encoding gradient (positive and
negative), separately for each time-of-flight. For a time-of-flight
averaged view of an experiment, reconstructions from times-of-
flight with significant signal are added together. To simultaneously
visualize the velocity and image intensity, the velocity encoded
data is plotted so that the hue (color) is scaled according to the
velocity and the saturation according to the signal intensity.

4. Sampling optimization

The choice of the sampling schedule has a strong influence on
the quality of reconstructions possible with the technique, as
shown in Fig. 2, because the sampled points must contain non-
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Fig. 2. The reconstruction of an artificial dataset with two different sampling
schemes. The sampling tables are for 4x subsampled 64 x 64 images and represent
the best and worst sampling schemes generated by repeatedly creating samplings
from the same Gaussian distribution. Even with the same distribution, a large
variation in reconstruction performance is apparent between the two reconstruc-
tions (A and C) despite the similar appearance of the corresponding sampling

schemes plotted right (B and D). Here, the plots indicate each reconstruction’s
intensity as value (black to full intensity) and phase as hue (color).

redundant information about all of the sparse coefficients as de-
scribed in [37] while simultaneously sampling regions of the trans-
form space where the signal is concentrated. The purpose of our
optimization was to avoid such possible pathological sampling
schemes, and find ones with generally good performance that
could be applied without specific consideration of the geometry.
Thus, we do not necessarily find the most optimized sampling for
a specific geometry. The optimization of sampling for compressed
sensing is entirely analogous to the problem of choosing the
appropriate sub-sampling schedule for other NMR reconstruction
techniques [37], except that the sparse transform of the
reconstruction instead of the reconstruction itself is relevant, and
one has the additional freedom of selecting this transform.

For use as a sparsifying transform, we selected wavelet trans-
forms due to their known applicability to a wide variety of images
(indeed, they are used in JPEG2000 image compression) and the
availability of several well-developed implementations. In particu-
lar, we selected the symmlet wavelet because, in the case of very
low SNR or inappropriate sampling schedules, it produced only a
mild blurring artifact, while other wavelet types produced gener-
ally harsher spikes and discontinuities. Finally, we note that, while
sparsification based on finite difference representation may be
appropriate for analogous applications in angiography, it does
not seem appropriate in our studies of microfluidic velocimetry.
This is because applications in angiography require only determin-
ing the extent or edge of a blood vessel, while our measurements
seek to elucidate the internal texture of a continuously varying
flow field. Indeed, explicit calculations of the sparsity of each ap-
proach (see Supporting information) agrees with this intuition: fi-
nite difference methods did not perform as well and were not used
here.

Having decided on a sparsifying transform, we next chose sam-
pling schedules by optimizing random, Gaussian weighted sam-
pling tables. The weighting was designed to bias the sampling
towards the center of k-space. We manually compared these
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candidate sampling schedules according to the magnitude of
wavelets of different scales that result after passage through trans-
form point spread function (TPSF), giving a heavier weighting to
the retention of coarser wavelets. The TPSF indicates how well a
particular sampling scheme contains the information required to
reconstruct intensities for different wavelet scales, and good reten-
tion requires incoherence between the sampling (k-space) and
wavelet domains. Further, our emphasis on the coarser wavelets
is essential since most of the image’s intensity in the wavelet do-
main is contained here, and poor retention of this information will
thus result in significant artifacts. Indeed, Fig. 2 illustrates the dra-
matic difference between sampling schedules that appear equiva-
lent in the conjugate (k) space, but which differ dramatically in the
degree to which they retain coarse wavelet information and which
therefore result in significantly different reconstruction quality.

Specifically, to generate a sampling scheme, for each grid size
and degree of sub-sampling, we first selected an optimal Gaussian
distribution based on the TPSF retentions. The width of this distri-
bution controls the compromise between retention of different
wavelet scales. In general, a narrower distribution — one that re-
tains information at coarser wavelet scales at the expense of finer
wavelets - became necessary for a satisfactory reconstruction at
higher sub-sampling ratios. Finally, the best sampling is selected
manually from numerous random trial application of that optimal
distribution, based again on the TPSF retentions.

5. Results

In the serpentine microfluidic mixer, we tested four sampling
schemes each optimized for 8x, 16x, 32x, and 64x sub-sampling
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of a 256 x 256 pixel velocity encoded image. A fully sampled
63 x 63 image with the same field of view was collected as a com-
parison to the 16x subsampled image. A fully sampled 256 x 256
image was not collected due to the prohibitively long acquisition
time (~7 days). All experiments produce velocity-encoded images
for multiple times-of-flight obtained from different points in the
stroboscopic acquisition as shown in Fig. 3. In general, components
visible in earlier images are nearest the outlet and reach the detec-
tor first, followed by components progressively closer to the inlet.
For this reconstruction, we can clearly resolve the flow, chip geom-
etry and flow velocity for each time-of-flight.

Several features of the reconstruction become apparent as we
increase the degree of sub-sampling. First, the reconstruction
quality gradually declines, as shown in the comparison of time-
of-flight averaged images collected at different degrees of
sub-sampling in Fig. 4. The threshold at which the reconstruction
begins to fail will generally vary depending on the sparsity of the
reconstructed image and the experimental signal to noise ratio
[30,37]. The velocity-encoded images agree qualitatively up to
sub-sampling factors of 16x, while very little degradation is
apparent for intensity images up to 32x sub-sampling. It is not
surprising that the intensity reproduction is more robust, as the
phase contrast technique used in the velocity imaging is signifi-
cantly more susceptible to noise and artifacts. At 64x sub-
sampling, the reconstructed image contains artifacts resembling
those from excessive lossy image compression. The form of these
artifacts is difficult to predict but reflects the properties of the
underlying sparsifying transformation and sampling scheme.
However, even such high degrees of sub-sampling may be useful
for qualitative binary analyses of presence or absence of an ana-
lyte, a common function of analytical microfluidic chips. We also
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Fig. 3. Images of flow through a serpentine mixing chip acquired with 8 x sub-sampling, arranged by time-of-flight. Only the horizontal component of the velocity is encoded
and displayed, and hence the sign of the velocity changes as the direction of flow changes relative to the horizontal axis. The time-of-flight corresponds to the period between
the encoding and detection. Therefore components nearest the outlet are visible first, while components further back are visible at later times-of-flight.
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Fig. 4. A comparison of velocity-encoded images of the mixing chip under varying
degrees of sub-sampling, summed over multiple times-of-flight, and shown for
both velocity and intensity reconstructions. The intensity reconstruction is the sum
of the magnitudes of the images generated for each step of the velocity encoding
gradient and reflects the relation weighted density of spins in a given voxel. Good
qualitative evaluation of the velocity is possible at up to 16x sub-sampling whereas
the intensity reconstruction maintains a similar quality with greater sub-sampling,
32x. The artifacts under high degrees of sub-sampling (64 x ) do not correspond to
simple blurring, but instead appear similar to image compression artifacts.
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note that in the case of microfluidic devices, the chip geometry is
known a priori, and the design of an optimal sampling scheduling
using that information may result in higher sub-sampling ratios.
Such approaches were not attempted here but work in this direc-
tion is presently in progress.

As shown in Fig. 5, sub-sampling can alternatively be used to in-
crease resolution instead of reducing the acquisition time. Both
images in the figure were collected with a similar number of
points, but the subsampled image clearly yields better resolution
and a more accurate representation of the chip than its fully sam-
pled counterpart, and even has the same signal to noise. Here, time
equivalent Cartesian sampling is unable to accurately reproduce
the channel widths and features of the flow field. Thus, we can ar-
rive at an optimal use of experiment time by finding a compromise
between the degree of sub-sampling and resolution.

Since the mixing chip is sparse by inspection and contains rect-
angular features, it does not represent the broader variety of por-
ous materials for which remote detection might be essential. In
order to test the applicability of this technique to irregular sys-
tems, we applied compressed sensing to the velocimetry of a
microfluidic channel harboring an irregular constriction. The 8x
subsampled (64 x 16 x 16) image of this constriction is shown in
Fig. 6, and illustrates that compressed sensing is broadly applicable

Subsampled 16x Fully Sampled
256x256 63x63
[ |
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Fig. 5. A direct comparison of a subsampled vs. a fully sampled reconstruction of
the mixing chip using a similar number of data points. (Left) A 16x subsampled
256 x 256 image reconstructed with compressed sensing. (Right) The same image
fully sampled for 63 x 63 points. Both images are zero-filled by a factor of four and
apodized as discussed in the text. The subsampled acquisition accurately repro-
duces the chip’s features (such as channel width) over a field of view that includes
the entire chip, whereas these features appear distorted in a fully sampled
acquisition collected with a similar number of points.
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Fig. 6. Flow through a microfludic constriction (or weir) obtained as a velocity
encoded 64 x 16 x 16 three-dimensional image subsampled 8x. (a) Spin density
image of the constriction. (b) Velocity and spin density image displayed as two
intersecting planes that intersect on an axis that is the approximate channel center.
The planes are colored according to the velocity. A wireframe contour surrounds the
channel and also reflects velocity. Both the constriction and correlated increase in
velocity are clearly visible. The subsampled reconstruction accurately reproduces
the feature which lacks the immediately apparent sparsity and simple structure of
the mixing chip. The application of compressed sensing here lets us examine the
feature at higher resolution (~20 um) with a shorter experiment time than
otherwise possible.
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to many systems that do not share the sparse features of most
microfluidic chips.

6. Conclusions

The successful application of compressed sensing in microflu-
idic mixers and channels demonstrates that it is a robust technique
for remotely detected MRI of microscale flow. Indeed, compressed
sensing is particularly attractive because it rests on a strong and
formal theoretical basis [30,32] that establishes the conditions un-
der which it will give accurate results. We anticipate that the tech-
nique will be widely used in remotely detected NMR because it
greatly reduces the experiment times for these high dimensional
experiments to more reasonable lengths, expanding its applicabil-
ity to microfluidics, porous systems, and to analogous in vivo flow
structures.
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